Konferenzprogramm
Die Sprecherinnen und Sprecher der InfoDays Generative AI für Developer präsentieren, implementieren und diskutieren mit den Teilnehmenden alles von A wie Agents, über Large Language Models, Embeddings, RAG, Fine-Tuning, Frameworks wie Langchain und LlamaIndex bis hin zu Z wie Zero-Shot Prompting.
Track: Workshop
- Mittwoch
29.05.
LangChain ist nicht nur das am meisten verbreitete Framework für AI-Applikationen mit dem größten Wachstum, es hat schon zu Beginn seiner Existenz Wert darauf gelegt, "agentic" zu sein. Dementsprechend bringt es alles mit, was man sich aktuell zum Thema Agenten nur wünschen kann. Von einfachen Rechercheagenten zu diskutierenden CAMEL-Multiagenten, von per LangGraph synchronisierten Agenten bis zu welchen, die Bilder verstehen, Webseiten crawlen und Captchas lösen, die Code dokumentieren und Tests schreiben oder von sich aus neue Applikationen aus dem Boden stapfen.
Max. Teilnehmendenzahl: 30
Zielpublikum: Entwickler mit Python-Basiskenntnissen
Voraussetzungen: OpenAI-Key, lokales Docker-Setup für https://github.com/mayflower/langchain_agents
Schwierigkeitsgrad: Basic
Johann-Peter Hartmann ist einer der wenigen Überlebenden der Versuchsreihe "Wie lange überlebt eigentlich ein Hacker, wenn man ihn kontinuierlich mit Managementaufgaben bewirft?". Dazu musste er Firmen gründen und führen, investieren und dabei viele Fehler machen. Trotz der daraus resultierenden Herausforderungen für geistige Gesundheit sind die Grundfunktionen und Restkompetenz eines Hackers erhaltengeblieben und dominieren den Blick auf Themen wie AI, Architektur, Leadership, Agile, DevOps und natürlich Security.
Lukas Bauer ist Software Engineer bei Mayflower.
29. Mai von 09:00 bis 17:00 Uhr: ausgebucht
05. Juni von 09:00 bis 17:00 Uhr (Zusatztermin online): verfügbar
ChatGPT (und die darin verwendeten GPT-3.5 und GPT-4) sind die bekanntesten Sprachmodelle. Leider kann man diese aber nur wenig anpassen, das geht maximal über den Kontext.
In vielen Unternehmensanwendungen würde man das aber gerne machen, um z.B. domänenspezifisches Vokabular abzudecken. Im Gegensatz zum Training ist das Feintuning von Modellen viel schneller, auch dank LoRA (Low Rank Adaptation) und peft (Parameter Efficient Tuning).
Nach einem kurzen Abriss der Theorie widmen wir uns dem Feintuning eigener Modelle und probieren dann aus, was diese gelernt haben und wie viel Wissen sie reproduzieren können.
Max. Teilnehmendenzahl: 2029. Mai von 09:00 bis 17:00 Uhr: ausgebucht
05. Juni von 09:00 bis 17:00 Uhr (Zusatztermin online): verfügbar
Christian Winkler beschäftigt sich seit vielen Jahre mit künstlicher Intelligenz, speziell in der automatisierten Analyse natürlichsprachiger Texte (NLP). Als Professor an der TH Nürnberg konzentriert er sich auf die Optimierung von User Experience mithilfe moderner Verfahren. Er forscht und publiziert zu Natural Language Processing und ist regelmäßig Sprecher auf Machine Learning-Konferenzen.